از این پس راه حل های خود را برای ما ارسال کنید
سایت هندسه(Geometry)این امکان را برای کاربران خود،امکان ارسال راه حل جهت بررسی،تصحیح و یا قرار دادن راه حل در سایت با نام نویسنده،فراهم آورده است.
علاقهمندان میتوانند از طریق لینک زیر برای ما راه حل های خود را ارسال کنند:
به برترین راه حل ها،به قید قرعه،امتیاز ثبت مطلب در سایت+۱ گیگابایت اینترنت رایگان ارسال میگردد.
چنانچه تمایل دارید در سامانه سایت ثبت نام کنید به لینک زیر مراجعه کنید:
چنانجه تمایل دارید نظرات،انتقادات و پیشنهادات خود را با ما درمیان بگذارید روی لینک زیر کلیک کنید:
دوستان سلام،
لطفا توجه داشته باشید که از این لحظه این وبلاگ آرشیو می شود و فقط ممکن است پست های مهم در آن قرار داده شود.
لطفا از این پس به وب سایت جدید ما به نشانی زیر مراجعه کنید.
http://geometryislife.rozblog.com
به عنوان مژده می توانم بگویم که در وبسایت جدید،امکان ثبت نام و نیز پرسش و پاسخ فراهم آمده.(در واقع برای سایت،انجمن طراحی کرده ایم)
لذا از تمام دوستان و همراهان همیشگی خواهشمندم به وبلاگ جدید ما حتما سر بزنند.
باتشکر.
In an acute triangle ABC segments BE and CF are altitudes. Two circles passing through the point A anf F and tangent to the line BC at the points P and Q so that B lies between C and Q. Prove that lines PE and QF intersect on the circumcircle of triangle AEF.
To see figure click here
Math isn't the art of answering mathematical questions, it is the art of asking the right questions, the questions that give you insight, the ones that lead you in interesting directions, the ones that connect with lots of other interesting questions the ones with beautiful answers.
G. Chaitin
Since you are now studying geometry and trigonometry, I will give you a problem. A ship sails the ocean. It left Boston with a cargo of wool. It grosses 200 tons. It is bound for Le Havre.. . .There are 12 passengers aboard. The wind is blowing East-North-East. The clock points to a quarter past three in the afternoon. It is the month of May. How old is the captain?
Find all positive integers N such that there exists a triangle which can be dissected into N similar quadrilaterals.
There are three famous problems of antiquity.
1)the duplication of the cube
2)the trisection of the general angle
3)the squaring of the circle
Which there wasn't any solution for them.
But now there are some solutions for these problems.
In this post I want you to find the answer of problem 1.
Help:
1)for this you want to make cube root of 2.
So try to draw a×f(2).(note that f(x)=cube root of x)
Hi everybody,
I'm holding a contest and if you want you can attend in it.
If you like you can send me your solutions by clicking here.
After 1 week the solutions will be on website and you can download it only if you are a user.so you can register here.
For sending solutions and other please click on following link:
Let the circles ω and ωintersect in points A and B. Tangent to circle ω at A intersects ωin C and tangent to circle ωat A intersects ω in D. Suppose that the internal bisector of ∠CAD intersects ω and ωat E and F, respectively, and the external bisector of ∠CAD intersects ω and ωin X and Y, respectively. Prove that the perpendicular bisector of XY is tangent to the circumcircle of triangle BEF
Let ω be the circumcircle of right-angled triangle ABC (∠A = 90◦). Tangent to ω at point A intersects the line BC in point P. Suppose that M is the midpoint of (the smaller) arc AB, and PM intersects ω for the second time in Q. Tangent to ω at point Q intersects AC in K. Prove that ∠PKC = 90◦.
Proposed by Davood Vakili.
Let ABCD be a xed convex quadrilateral with BC = DA and BC not parallel with DA. Let two variable points E and F lie of the sides BC and DA, respectively and satisfy BE = DF. The lines AC and BDmeet at P, the lines BD and EF meet at Q, the lines EF and AC meet at R. Prove that the circumcircles of the triangles PQR, as E and F vary, have a common point other than P.
========================================================
To see solution please click here.
Six points are chosen on the sides of an equilateral triangle ABC: A1, A2 on BC, B1, B2 on CA and C1, C2 on AB, such that they are the vertices of a convex hexagon A1A2B1B2C1C2 with equal side lengths. Prove that the lines A1B2;B1C2 and C1A2 are concurrent.
========================================================
To see solutions click here.
Let ABC be an acute-angled triangle, and let P and Q be two points on side BC. Construct point C1 in such a way that convex quadrilateral APBC1 is cyclic, QC1 CA, and C1 and Q lie on opposite sides of line AB. Construct point B1 in such a way that convex quadrilateral APCB1 is cyclic, QB1 BA, and B1 and Q lie on opposite sides of line AC. Prove that points B1,C1,P, and Q lie on a circle.
======================
To see solution click here